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Source of disturbance

Impediment to airport expansion
New runway at Logan: 25-year litigation battle
Five additional runways at US 30 busiest airport in past 10 years

Factor in air traffic congestion and delay
Limiting the future growth of air transportation
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Advanced flight guidance technologies 
Global Positioning System (GPS)
Flight Management System (FMS)

Enable procedures that significantly reduce noise
Thrust management strategies redistribute noise during departure
and reduce noise during approach
Area Navigation (RNAV) enables flexible trajectories with noise 
mitigation as a consideration
Lateral navigation consistently directs aircraft away from populated 
areas
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Noise Abatement 
Approach Procedures

3 º decelerating approachExisting approach

3°
runway3°

runway

Aircraft intercepting the 3º glide 
slope from below (technology 
constraint) 

Fly close to the ground and at 
high thrust

Flaps/gear extension initiated 
early

High noise impact

Intercept 3º glide slope at high 
altitude (GPS guided)

Fly higher above ground and at 
idle thrust

Flaps/gear extension delayed

Minimal noise impact Global 
Positioning System (GPS)
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Noise benefit of 
3° Decelerating Approach (JFK 13L)

Existing Approach 3° Decelerating Approach
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Continuous Descent Approach at 
Louisville International Airport 10/2002

CDA

Conventional
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Loc Lat(deg) Long(deg) Elv(ft)

P1 N38.38845 W085.89724 898

P2 N38.38428 W085.85061 968

P3 N38.37959 W085.84460 964

N1 N38.36834 W085.82977 983

N2 N38.39439 W085.86007 797

N3 N38.38556 W085.87829 786

N4 N38.38247 W085.91387 863 SDF Elv ~ 500 ft
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Noise Reduction
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3.9 to 6.5 dBA noise reduction

400 to 500 lb fuel saving over “conventional” approach

up to ~100 sec reduction in flight time over “conventional” 
approach under no wind condition
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Air traffic control considerations
Aircraft deceleration rate is sensitive to system uncertainty 
Uncertainty (atmospheric, pilot response) in operational 
environment results in significant variability in aircraft 
performance
Controllers increase separation to account for variability
Increased separation results in lower throughput 
End result: currently used only in low-traffic environment

FMS VNAV and auto-throttle logic design
Delay in pilot response causes auto-throttle to provide 
disproportionately large thrust for speed envelope protection
VNAV logic creates level flight segment to arrest acceleration 
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NASA Langley
Energy Indicator

MIT/Delft
Self-Spacing

Europe
CDA,LPLD

Netherlands
ACDA

NASA Ames
DAG
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Gate 1:
Vtarget,δV,
Htarget

Gate n:
Vtarget,δV,
Htarget

X5 X4 X3 X2 X1 Xo

speed VTOD

run way

Objective
Provide pilots a means to manage a/c 
deceleration and meet targets without 
adding airborne automation

Approach
Develop gates (altitude and speed 
checkpoints) using Monte-Carlo 
simulation (static solution) or ground 
based automation (to incorporate 
details of current weather, etc.)
Provide gates to pilots as a feedback 
mechanism
Pilots adapt given flap schedule 
based on deviations at gates

Key Feature
Comparable performance to other 
forms of guidance that require change 
in aircraft equipage
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Objective
Improve trajectory using Satellite Landing System (SLS ) technology

Approach
Sensitivity analysis to determine key factors affecting performance
Searching design space for best parametric procedure and control logic
Airborne trajectory planning: lateral vectoring, weather, a/c configuration

Features
Flexible flight track allowing lateral vectoring
Variable glideslope to minimize noise impact and assure safety

TOD
Downwind, γ < 3°

ThresholdDecision height Buffer

Turn, γ > 3°

Headwind, γ > 3°
3° glideslope
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Objective
Real-time optimal noise abatement trajectory generation and control

Approach 
Dynamic programming for paths generation
Linear and nonlinear optimization over noise
Receding horizon control for real-time adaptation

Key Features
ATC controller retains control during approach
More friendly and flexible NAP trajectory for pilots   
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MIT Weather-based 
Noise Abatement

WindWind
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Summary

Noise is an impediment to growth of air transportation
Advanced flight guidance technologies (GPS, RNAV) enable 
flexible operational procedures for noise reductions

Simulation work

Flight demonstration test at Louisville

Implementation challenges: inability of controllers to separate 
and sequence a/c for maximum throughput and safety
Current work:

Develop candidate architectures and ground and airborne decision
support tools

Evaluate controller/pilot performance through simulation and flight test

Develop appropriate solutions for near, medium, and long term

Develop procedures for Louisville and London Heathrow



MIT  MIT  
ICAT  ICAT  

Next Steps at Louisville (SDF)

Controller-in-the-loop Study
Understand limitation of controller and pilot performing CDA
Quantify ability of controllers to predict future separation violations
Develop “model” of appropriate control actions – course and fine control

Controller Tools Study
Quantify benefit to controllers of support tools
Develop improved model of controller actions given different tools

Crew Model Study
Determine impact of advanced FMS and displays on pilot and aircraft 
performance (given controller models)
Develop improved model of pilot performance

Procedure Design and Full Distributed Simulation Study
Develop procedures for Louisville 
Evaluate performance and implementation issues of procedures
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